If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4m^2-16m=0
a = -4; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·(-4)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*-4}=\frac{0}{-8} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*-4}=\frac{32}{-8} =-4 $
| 0,0064=(10,265-p0)/p0 | | 6x-6=-2x | | 6x-7.2=-2x | | 4x(x)-3x(x+5)=0 | | -2(y+4)=0 | | 7r-15=r+27 | | 4(5c+1)-40=15c+4 | | 11x+46=4x+4 | | 11+(67-x)=4 | | x/103=0 | | 0=-0.01x^2+0.7x+6.2 | | 8+4(z-2)=-2z+1 | | z/82=2 | | 45-(45+3)=x | | 0=-0.01x^2+0.6x+6.1 | | 2(x-9)=32 | | 3q+2/3=18 | | x³+10²=155 | | -7(n+2)+15=-3n-11 | | x³+x²=155 | | 3x+4=39−2x | | 7x+12=52−3x | | 2=0.013x^2-1.18x+28.24 | | 4(x-1)+1=5(2x+1)-6 | | 8=2c-4 | | 5-c=15 | | 0=-16t^2+(40)t+5 | | t÷8=7 | | -12-x=-12-7x | | 2/5x-1/9=3/9x+4/5 | | 5x+12=x-36 | | x(x+2)(x+4)=5760 |